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Sidelobe Sector Nulling
With Minimized Phase Perturbations

1. INTRODUCTION

Reduction of the sidelobes in extended sectors of an antenna pattern is often
required to minimize the effects of clutter or of wide-bandwidth point interfer-
ences. Such enhanced sidelobe protection may, however, degrade desirable fea-
tures of the pattern such as gain and beam width, or an already low average side-
lobe level. A tradeoff exists, of course, between the two goals of lowered side-
lobes in certain pattern sectors, and the preservation of the integrity of a design
antenna pattern. Preservation of pattern integrity demands that the perturbations
of the complex array weights required to achieve lowered sidelobes be kept as
small as possible. This suggests that a useful performance measure in sidelobe
sector nulling is the weighted sum of the average power in a specified sidelobe
region and the squared weight perturbations. By varying the weights assigned to
the average power in the sidelobe sector and the weight perturbations, and mini-
mizing the performance measure, it is then possible to shift the relative emphasis

placed on the two principal objectives.

(Received for Publication 21 March 1985)
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When both the amplitude and phase of the array weights can be freely varied,

an analytic solution can be obtained for the array weights that minimize the per-
formance measure described above. 1 The purpose of this report is to present a
sidelobe sector null synthesis method based on the minimization of the same per-
formance measure when perturbations of the complex weights are restricted to be
of the array weight phases only. Interest in such phase-only pattern control
methodsz-33 has been stimulated by the growing importance of phased array an-
tennas, since the required phased controls are already available as part of a beam
steering system. Unlike the case of combined phase and amplitude control, a set
of nonlinear equations is obtained by setting the derivatives of the performance
measure with respect to the array weight phases equal to zero. This set of equa-
tions cannot be solved analytically, but the phases that minimize the performance
measure can be found numerically using a nonlinear optimization computer code.
Curves are plotted showing the variation of the average sector sidelobe power,
sum of the squared weight perturbations, gain in the look direction, and pattern
null locations, with the ratio of the weights in the performance measure. Ex-
amples are shown of the patterns with reduced sidelobes that are obtained using
this method.

2. ANALYSIS

We consider a linear array of N equispaced, isotropic elements with inter-
element spacing d and phase reference at the array center. Let
‘E() = [wol, W02, v e ey WON]

and

= w w ]T
w _[WI’ A ] N

2’

denote the vectors of the original and perturbed complex weights respectively, and
let

Won T 3 €XP (jd»on). n=1,2,...,N

Because of the large number of references cited above, they will not be listed
here. See References, page 13.




Then, since the perturbations are assumed to be of the phases only,

W, B W o exp (jdtn) =a exp[j(¢on+¢n)]. n=1,2,...,N .

The original and perturbed field patterns are given respectively by

N
po(u) = Z Won €*P (jdnu)
n=1
and
N
plw) = Y w_exp (jd u)
n=1
with
d = (N-1)/2-(n-1), n=1,2,...,N
and
u = (27#/A)d sin (8) ,

where ) is the wavelength, and 9 the pattern angle measured from broadside to

the array.
The sum of the squared weight perturbations is given by

N N N
Yodw w1222 a®1-cos(@)) =4 [a sin ¢ /20)°
n=1

n=1 n=1

Let the sidelobe sector in which the power is to be minimized be specified by the
interval [u_ - €, u_+¢ 1. Then the average power, P_ (uo, £), in the sidelobe
sector is given by

uo+s

Pav(u0,£)=(1/2£) f |p(u)|2du

u -~¢
[¢]

N
; Z Z 2n%m COs[‘bon - osom * ¢n B ¢m * (dn B dm)uo]
n=1l m=1
‘Sinc[(dn -dm)s] , (1)
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where sinc (x) = sin(x)/x. The performance measure, P, is now defined to be

N
. cw |2
Pouy 2w -w [“+u P .o (2)
n=1

where By and k, are the respective weights assigned to the sum of the squared
weight perturbations and the average power in the sidelobe sector. A necessary
condition for P to have a minimum is that the partial derivatives of P with respect
to the phase perturbations be equal to zero; that is

8P/6¢q=0, q=1,2,...,N

It is a straightforward matter to calculate the partial derivatives, thus obtaining
the set of equations

2 . .
Hi3g sm(¢q) - Hya sin| ¢oq “ ¢t ¢q et (dq -d Ju )

« sinc | (dq - dn)e] =0

This set of equations is nonlinear in the variables ¢n and cannot be solved analyti-
cally. It is possible, however, to find a set of phase perturbations that minimizes
P using a nonlinear optimization computer code.

Although in the above analysis we have considered a single sidelobe sector
only, the nulling method presented generalizes immediately to any number of
sidelobe sectors. The expression for Pav (uo, ¢) given in Eq. (1) entering into the
performance measure defined by Eq. (2) is simply replaced by a sum of such ex-
pressions with different values of Ho and ¢. Different weights can be assigned to
the various sidelobe sectors if desired. It is also possible to let the width ¢ of a
sidelobe sector become zero, in which case the method synthesizes a null ai a
point location.

3. RESULTS

The phase perturbations required to minimize the performance measure de-
fined by Eq. (2) were calculated using the nonlinear optimization computer code

LPNLP. 34 Calculations were performed for uniform arrays of 11, 21, and 41

34. Pierre, D. A., and Lowe, M. J. (1975) Mathematical Programming Via
Augmented Lagrangians, Addison~-Wesley, Mass.
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elements with interelement spacing /2. The look direction of the array was made

zero degrees by setting all phases initially to zero, and the pattern sector for re-
duced sidelobe power was taken to be the interval [20°,30°]. The ratio, “2/“1‘ of
the weights assigned to the average sector sidelobe power and the sum of the
squared weight perturbations respectively, was varied from 0.0001 to 100,000. In
Figures 1, 2, and 3, respectively, the average sector sidelobe power, sum of the
squared weight perturbations, and gain in the look direction are plotted. The abil-
ity to lower sidelobes in a wide pattern sector without significantly affecting the
look direction gain increases rapidly with the number of array elements. For an
l1-element array, a loss of 1.75 dB in gain is associated with a 40-dB reduction
in average power over the nulling sector, while for a 41-element array only a

0. 18 dB loss in gain is required to achieve a 40 dB reduction in average sector
sidelobe power. The phase perturbations required to lower the sector sidelobe
level, also cause a shift in the mainbeam direction that decreases with increasing
number of array elements. For the 11-element array, and the weight ratio /.42/;41
equal to 100, 000, the peak shifted to 2.47° with the peak gain 0.75 dB higher than
the gain in the look direction, while for the 41-~element array and the same weight
ratio, the mainbeam shifted by only -0.03° with the peak gain only 0.001 dB higher

than the look direction gain.

POWER (dB)

-80. T } + + . +
-4.0 -3.0 -2.0 S1lo 3.0 () 2.0 310 4.0 slo

Figure 1. Average Sidelobe Power in the Sector {20°,30°] for
Arrays of 11, 21, and 41 Elements
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0.0351

SUM OF SQUARED WEIGHT PERTURBATIONS

0.010+
0305
3.000 4 +
-4.0 -3.0 -2.0 -0

LOG|O (;1.2 /y.|)

Figure 2. Sum of Squared Weight Perturbations for Arrays of
11, 21, and 41 Elements

GAIN (dB)

LOG | (/.12//,4.|)

Figure 3. Look Direction Gain of Perturbed Pattern for Arrays
of 11, 21, and 41 Elements
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In Figure 4 the locations of the pattern nulls closest to the sector {20°,30°]
are plotted as a function of logm(u2 /ul) for a uniform amplitude array of 41 ele-
ments. It is clearly seen how an increasing number of nulls are moved into, and
closer to, the sector [20°,30°] as /.42/141 increases and hence as increasing weight
is placed on lowering the sidelobes in the sector as compared with preserving the
original pattern. It is interesting, however, that even for values of uz/l-ll much
larger than those shown in Figure 4, a maximum of only nine nulls are moved into
the sector [20°,30°). (For uniform arrays of 11 and 21 elements, the maximum
number of nulls moved into the sector [20°,30°] was 4 and 6 respectively.) This
behavior contrasts strongly with that found when both the amplitude and phase of
the array weights can be varied, in which case more and more nulls up to the
maximum number of N-1 are moved into the nulling sector as “2/“1 increases

to . 1,35

The maximum number of pattern nulls that can be moved into the null-
ing sector with phase-only weight control is, moreover, considerably less than the
number N/2 that might be expected, in view of the fact that in phase-~only nulling

in real antenna patterns of linear arrays there are N/2 degrees of freedom. The

40. 0

DEGREES

LOGg (up/py)

Figure 4. Location of Nulls in Perturbed Pattern of 41-Element
Array in the Vicinity of the Sector [20°,30°]

35. Shore, R. A., and Fante, R. L. (1981) Sector Sidelobe Nulling, RADC-TR-
81-326, AD A112628.
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restriction of the perturbations of the array weights to be of the phases only, thus
n: results in a considerable loss of pattern control compared with the full control
3 available with combined phase and amplitude weight variation.

As examples of the patterns obtained with the null synthesis method described
in this report, Figures 5, 6, and 7 show the unperturbed pattern and the perturbed

b pattern obtained with “2/“1 = 100 and the sector for reduced sidelobes taken to be
[20°,30°], for arrays of 11, 21, and 41 elements respectively. As the number of
= elements increases, the power in the sector [20°,30°] decreases and the perturbed
rff'::‘ pattern follows the original pattern more closely, especially in the near-in sidelobe
; region. The far-out sidelobes for the 41-element pattern, however, are still con-

S siderably higher than those of the original pattern. This pattern distortion is
noticeably larger than that associated with combined phase and amplitude control,

where for the same case the maximum increase in the perturbed sidelobe envelope
above the unperturbed envelope is 2 dB as shown in Figure 8.
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Figure 6. Unperturbed Uniform 21-Element Array Pattern (----)
and Perturbed Pattern ( ) With Lowered Sidelobes in the Sector
[20°,30°]. uz/ul = 100

$

POWER (dB)
w
g

'69 ot —t t 'v
THETA (DEGREES)

Figure 7. Unperturbed Uniform 41-Element Array Pattern (----)
and Perturbed Pattern (——-) With Lowered Sidelobes in the Sector

[20°,30°). wy/m = 100
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Figure 8. Unperturbed Uniform 41-Element Array Pattern (----)
and Perturbed Pattern ( } With Lowered Sidelobes in the Sector
[20°,30°] Obtained With Combined Phase and Amplitude Weight
Perturbations. “2/“1 = 100

Despite the significant pattern distortion exhibited in Figure 7, the inclusion
of the weight perturbations in the performance measure affords considerable pro-
tection for the integrity of the original pattern. This can be clearly seen by com-
paring Figure 7 with Figure 9 in which we show the perturbed pattern obtained for
the 41-element uniform amplitude array when By = 0. Hence, zero weight is
placed on minimizing the weight perturbations. Here a reduction of power in the
sidelobe sector [20°,30°] somewhat greater than that achieved when “2/“1 = 100
(-97 dB compared with -59 dB) is obtained at the expense of a wild distortion of
the original pattern.

Calculations were also performed to investigate the uniqueness of the set of
phase perturbations found by the nonlinear computer optimization code to minimize
the performance measure. The required starting set of phase perturbations,
normally set equal to zero, was varied widely over the interval [ -=,+7]. Although
this resulted in an increase in convergence time, the solutions found did not differ
significantly from one another. This suggests that the performance measure has
only one local minimum and that this minimum is the global minimum for the

problem.

10
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Figure 9. Unperturbed Uniform 41-Element Array Pattern (----)

and Perturbed Pattern (——-) With Lowered Sidelobes in the Sector
[20°,30°]. u2/u1 =

4. CONCLUSIONS

A performance measure consisting of a weighted sum of sector sidelobe power
and squared element weight phase perturbations has been shown to be effective in
reducing sidelobes in a specified pattern sector while maintaining the mainbeam
gain. Necessary conditions for the minimization of the performance measure were
derived by equating to zero the partial derivatives of the performance measure
with respect to the phase perturbations. Because these equations are nonlinear in
the phase perturbations and cannot be solved analytically, an unconstrained mini-
mization computer code was used to obtain the phase perturbations minimizing the
performance measure. The fact that the same solution was obtained from a variety
of different numerical starting points suggests that the performance measure has a
unique minimum in the [ -7,+7) range. The number of iterations required to solve
the problem increases with the number of array elements and also with increasing
weight placed on reduction of sector sidelobe power compared with minimization of

weight perturbations.

11
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Pattern distortion in regions of the pattern other than the nulling sector can
be reduced considerably from what it is if no weight is placed on minimizing the
phase perturbations. Both average power in the nulling sidelobe sector and
pattern distortion decrease as the number of array elemrents increases. The level
of pattern distortion is, however, considerably higher than that produced when the §
weight perturbations are not restricted to be of the phases only.
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